

Seminario de Análisis Numérico y Modelamiento Matemático de Estudiantes

Conservative numerical scheme for dissipative wave equation with fractional derivative damping

In this work, we present a numerical approach for studying the asymptotic behavior of a general wave equation with a dissipative fractional derivative term. The Caputo fractional derivative and its exponential generalization, used as models for the dissipative effect in evolution equations, have several applications, such as in thermal stresses, models of porous electrodes, relaxation vibrations, and viscoelasticity. This nonclassical derivative appears as a nonlocal term and is generally approximated using quadrature formulas, some of which can be quite accurate due to their high order, but do not produce a constant decay of energy, as occurs in the continuous case.

To address this issue and eliminate oscillations, we introduce an augmented Mbodje model[1], which we discretize while preserving energy decay. We apply our results to several vibration and elasticity models. [2][3][4][5]

Bibliography

[1] B. Mbodje, G. Montseny. *Boundary fractional derivative control of the wave equation*. IEEE Trans. Autom. Control. 40 (1995), 378--382.

[2] K. Ammari, V. Komornik, M. Sepúlveda, O. Vera. Stability of the Rao-Nakra sandwich beam with a dissipation of fractional derivative type: theoretical and numerical study. Mathematical Methods in the Applied Sciences, vol. 48, (6), pp. 6678-6690, (2025).

[3]K. Ammari, V. Komornik, M. Sepúlveda, O. Vera. *Numerical study of a Transmission Problem in Elasticity with kind damping*. J. Comput. Appl. Math. 475 (2026), Paper No. 117029.

[4] K. Ammari, V. Komornik, M. Sepúlveda, O. Vera. *Numerical stabilization for a mixture system with kind damping*. Appl. Math. Optim. (2025). To appear.

[5] F. Aslam, Z. Hajjej, J. Hao, M. Sepúlveda. Global existence and asymptotic profile of an infinite memory logarithmic wave equation with fractional derivative and strong damping. Math. Methods Appl. Sci. (2025) To appear.

Thanks

The author was supported by the following grants: Fondecyt-ANID project 1220869, and ANID-Chile through Centro de Modelamiento Matemático (FB210005)), e-mail: maursepu@udec.cl

Dr. Mauricio Sepúlveda Cortés Universidad de Concepción

Departamento de Ingeniería Matemática, UdeC Centro de Investigación en Ingeniería Matemática (Cl²MA), UdeC Centro de Modelamiento Matemático de la Universidad de Chile

Miércoles 24 de septiembre

12:30 - 13:30 horas Auditorio Hermann Alder Weller, Cl²MA, UdeC